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J.M. Barroso-Maldonado*, J.M. Belman-Flores, S. Ledesma, V.H. Rangel-Hernández, E. Cabal-Yépez
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Abstract
This work presents an analysis to predict the energy performance of a reciprocating compressor working with refrigerant
R134a using artificial intelligence. The compressor is located in a vapor compression system; tests were experimentally
obtained and were used to develop two models: one using an artificial neural network and another one using a probabilistic
neural network. Because the relationship between the compressor input variables and the respective output variables is
complex, these techniques of the area of artificial intelligence are excellent methods to model this type of compressor.
The compressor input variables were: compressor rotation speed, suction pressure, suction temperature and discharge
pressure. The compressor output variables were: mass flow rate, discharge temperature and energy consumption. Computer
simulations were performed to train and validate the proposed methods. In order to measure the performance of these
methods, the mean squared error was computed for each experimental test and for each model. The simulations results
were used to establish the validity of the models. Finally, the main contribution of this paper is to extend the use of artificial
intelligence to predict and simulate the behavior of a reciprocating compressor.
Keywords: artificial intelligence, simulation, reciprocating compressor, energy performance, R134a.

Resumen
Este trabajo presenta un análisis para predecir el desempeño energético de un compresor reciprocante que trabaja con
refrigerante R134a usando inteligencia artificial. El compresor se encuentra en un sistema de compresión de vapor; las
pruebas se obtuvieron experimentalmente y se utilizaron para desarrollar un modelo de red neuronal artificial y otro con
una red neuronal probabilı́stica. Debido a que la relación entre las variables de entrada del compresor y las variables de
salida es compleja, estas técnicas del área de la inteligencia artificial son excelentes métodos para modelar este tipo de
compresores. Las variables de entrada fueron: velocidad de rotación, presión de succión, temperatura de succión y presión
de descarga. Las variables de salida fueron: flujo másico, temperatura de descarga y el consumo energético. Se realizaron
simulaciones computacionales para entrenar y validar los métodos propuestos. Con el fin de medir el rendimiento de estos
métodos, la media del error cuadrático se calculó para cada prueba experimental y para cada modelo. Los resultados de las
simulaciones se utilizaron para establecer la validez de los modelos. Por último, la principal contribución de este trabajo es
extender el uso de la inteligencia artificial para predecir y simular el comportamiento de un compresor reciprocante.
Palabras clave: inteligencia artificial, simulación, compresor reciprocante, desempeño energético, R134a.

1 Introduction

The field of refrigeration is an area of great
research because of the high impact on industrial
processes, medicine, edifice comfort, domestic
applications, etc. Inevitably, these applications are

associated with a high energy consumption. For
instance, the domestic refrigerator is among the home
appliances that has the highest energy consumption;
it has been estimated that there is one refrigeration
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system for each six people on Earth (Coulomb, 2006).
The majority of these refrigerators are based on vapor
compression technology which, for instance, United
States homes are responsible for around 18% of the
total energy consumption (U.S. Energy Information
Administration, 2015). This percentage noticeably
increases due to: malfunctioning events in the systems,
deficient designs or wrong operating conditions. The
study and analysis of refrigeration systems based
on vapor compression are of great interest (Belman-
Flores et al., 2015).

Since the compressor is responsible for most
of the energy consumption, the modelling of this
component is an open area for research. Thus, different
methods for modeling reciprocating compressors are
presented in the literature, from those that solve the
Navier-Stokes equations (Rigola et al., 2005; Damle
et al., 2011), to those models that are aided by
empirical correlations (Liberia et al., 2000; Ma et
al., 2000; Gonzalves et al., 2008; Barroso-Maldonado
et al., 2015). Additionally, it is possible to find
some experimental studies for compressors coupled in
transcritical systems (Yuan et al., 2012), comparative
analysis between alternate refrigerants (Navarro et
al., 2013), studies about design parameters to reduce
its energy consumption, studies for the diagnosis
of faults, and finally, research for thermodynamic
predictive monitoring (Yasar et al., 2007; Elhaj et al.,
2008; Yu et al., 2013; Salazar-Pereyra et al., 2016),
among others.

In the same context and because of the importance
of cool generation, several methodologies have been
proposed to optimize the compressor. Consequently,
the field of the artificial intelligence has been used
in the last decade for modeling, not only in the
field of refrigeration, but also in other fields related
with mechanical engineering (Soteris, 2001; Zhang
and Friedrich, 2003; Hany, 2006; Mohanraj et al.,
2012). The field of artificial intelligence includes:
expert systems, artificial neural networks (ANNs),
probabilistic neural networks (PNNs), simulated
annealing (SA), genetic algorithms (GA), fuzzy logic,
among others. In the case of ANNs and PNNs, it
is important to mention some advantages of these
models, such as their simplicity and ability of
modeling a multivariable problem; they can extract
non-linear relationships by means of training data.
Therefore, models based on neural networks can
predict outputs quite quickly and with high accuracy,
even if the training data set is limited. Such models
have already been explored in several scientific
disciplines; for example, Rico et al. (2014) developed

an artificial neural network that controls the system
that affects the moisture content in the poultry litter
to ensure that it can be used as fuel. Another example
is geothermal issues, in the investigation of Diaz
Gonzalez et al. (2013) a statistical analysis based
on ANNs to determine the contribution of some
chemical elements in the final estimation of downhole
temperatures of geothermal wells.

In the field of thermal science, it is easy to
find many applications of ANNs. For instance,
ANNs have been proposed in: the analysis of
a heat exchanger (Monharaj et al., 2015), solar
thermal energy (Yaı̈ci and Entchev, 2014). Also
they have been used in refrigeration, specifically in
air conditioning and heat pump systems (Mohanraj
et al., 2013), automotive air conditioning systems
(Haslinda et al., 2013), as well as the determination
of thermophysical properties of alternative refrigerants
(Secan et al., 2011). Likewise, Belman-Flores et al.
(2013) modeled a variable speed vapor compression
system and in the work of Ledesma and Belman-Flores
(2014) are energy maps built using the refrigerant
R1234yf. Despite the large number of applications
of artificial intelligence in refrigeration, compressors
analysis under this technique is not promoted at
all. Therefore, there are few publications related
to artificial intelligence applied to reciprocating
compressors. For instance, Heinrich and Schwarse
(2016) proposed a numerical model for the simulation
of a centrifugal compressor and performed a genetic
algorithm optimization to improve the compressor
performance. Yang et al. (2009) developed a loss-
efficiency compressor model using an ANN to
simulate the compressor performance for both single
and variable speed compressors. Ghorbanian and
Gholamrezaei (2009) designed a neural network to
predict the compressor performance map at the design
stage. Sanaye et al. (2011) proposed two ANNs and
a non-linear regression model to analyze experimental
data obtained from a rotatory compressor. Tian et al.
(2015) applied an ANN, a method based on partial
least squares, and a regression to predict the energy
performance of a scroll compressor.

On the other hand, regarding PNNs applications,
they are not limited to a specific area. Since a PNN is
by nature a classifier, in the literature the applications
are oriented to data classification. These applications
can be organized into categories namely: accounting,
finance, marketing, health, biology, medicine, among
others (Paliwal et al., 2009). In the field of mechanical
engineering PNNs have been explored slightly. Thus,
some applications in this field are used to detect faults

680 www.rmiq.org



Barroso-Maldonado et al./ Revista Mexicana de Ingenierı́a Quı́mica Vol. 16, No. 2 (2017) 679-690

in gas turbines (Romesis and Mathioudakis, 2003) and
predict the power output of wind turbines (Tabatabaei,
2016). Some investigations for the diagnostic ability
using a PNN in turbofan engines have been studied
(Bin et al., 2000; Romessis et al., 2000).

In this paper, an analysis of a reciprocating
compressor using ANNs and PNNs is presented. This
analysis consists of the modeling or prediction of the
energy performance of a variable speed reciprocating
compressor which is mounted on a vapor compression
system. First, measurement tests were captured from
the experimental facility. Second, an ANN and a
PNN were trained using these measurement tests to
estimate the mass flow rate of the refrigerant, the
discharge temperature and the energy consumption.
The input compressor variables were: rotation speed,
suction pressure, suction temperature and discharge
pressure. Both networks were validated, and then, they
were compared to each other. Computer simulations
were performed to adjust the number of neurons in
the hidden layer of the ANN. The main contribution
of this paper is the proposal of two techniques
from the area of artificial intelligence to model a
reciprocating compressor. These models are based on
experimental parameter measurements, therefore, they
automatically adjust to the physical model.

2 Description of experimental
facility

The principal refrigeration system includes a vapor
compression circuit and two secondary circuits, see
Fig. 1. The main circuit has: an open type variable
speed compressor, a shell-and-tube evaporator, a shell-
and-tube condenser, and a thermostatic expansion
valve. The test facility is fully instrumented to measure
variables such as pressure, temperature, mass flow
rate, rotation speed, and energy consumption. The
volumetric flow and the inlet temperature of the
secondary fluids and the rotational speed are the
controllable parameters in the experimental tests. The
working fluid is R134a.

The compressor mounted on this circuit is an
open type Bitzer V model. These compressors have
a shell which is independent of the electrical engine
so that the connection to the motor is made through a
mechanical transmission by pulleys. In Table 1, some
technical parameters of this component are presented.

 

Figure 1. Schematic diagram of the test bench. 

 

Figure 2. Common architecture of an ANN with a hidden layer. 
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Fig. 1. Schematic diagram of the test bench.

Table 1. Geometric features of the compressor.

Number of cylinders 2
Piston diameter [m] 0.085
Stroke [m] 0.06
Rotation speed range [rpm] 400-600
Diameter-length of the internal
suction line [m]

0.029-0.06

Diameter-length of the internal
discharge line [m]

0.029-0.06

Displaced volume [m3/h] @ 560
[rpm]

23.1

Various types of sensors are strategically located
depending on the parameter to be measured obtaining
records for the variables of interest such as:
temperature, pressure, mass flow rate, rotation speed,
and power consumption. Table 2 presents a summary
of the type of sensors used and the uncertainty
associated with each measurement. The signals
generated by these sensors are directed to a SCXI 1000
data acquisition system from National Instrument.

3 Basics of ANNs and PNNs
Artificial neural networks are sophisticated modeling
techniques capable of modeling extremely complex
processes, they are used for: pattern recognition,
optimization, simulation, prediction, etc.
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Table 2. Measured parameters and their uncertainties.

Parameter Instrument Uncertainty

Temperature Thermocouple K-type ±0.3 K
Pressure Pressure transducers ±0.1%
Power Digital wattmeter ±0.5%
Mass flow rate Coriolis flow-meter ±0.22%
Rotation speed Inductive sensor ±1%

 

Figure 1. Schematic diagram of the test bench. 

 

Figure 2. Common architecture of an ANN with a hidden layer. 
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Fig. 2. Common architecture of an ANN with a hidden layer.

In particular, neural networks are nonlinear
systems and they are inspired in biologic organisms.
In literature, it is possible to find a vast amount
of theoretical information about neural networks,
particularly on ANNs and PNNs (Russel and Norving,
2009; Jones, 2008). In the following two subsections,
the foundations, architecture and operation of both
networks are reviewed.

3.1 Artificial neural network

The ANN is a feedforward network with one input
layer, one output layer and several hidden layers
(commonly just one hidden layer). Each layer is
composed of neurons, in this work λ represents the

number of neurons in the hidden layer. For instance,
in Fig. 2 the network has three neurons in the hidden
layer (λ = 3). These neurons are connected to each
neuron to other neurons using a weight (w). One
special type of weight is called the bias weight (wbias);
this can be visualized schematically in Fig. 2.

The network shown in Fig. 2 is designated as a
black box model because it can be viewed in terms
of its inputs and outputs without any knowledge
of its internal workings. The ANN is composed of
processing units called neurons as shown in the box
in this figure. Each neuron unifies this information
by means of linear accumulation, and then used
an activation function to produce its output. This
function basically executes a nonlinear irreversible
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transformation (see Eq. 1) between the neuron input
(ε) and the neuron output (z).

z = tanh(1.5ε) (1)

This activation function has been widely investigated.
Several studies include the 1.5 factor which appears
in the argument of the hyperbolic tangent; for a
more detailed theoretical information, see the work of
Russel and Norving (2009) and Jones (2008).

The secret of learning in these models is the
neuronal interconnections, thus neurons are linked
using connecting lines. Each line has an assigned
weight (w) which acts as a constant weighting factor
(simulating the biology synapses), see Eq. 2.

ε =

M∑
m=1

xm wm,k + wbias (2)

where M is number of neurons in the previous layer.
The process responsible for weights adjustment is
typically called training. In order to train an ANN, it
is necessary a data set that has a set of input values
(x), and a set of desired values (y) usually known as
the target. After the training process has completed,
an input value (x) is presented to the network and
the ANN produces an output value (y′). The learning
is successful if y′ is close to y for each case. The
mean squared error, mse, is typically used to assess the
performance of model, in this case of the ANN. The
mse is computed between the actual network output
y′, and the target value y as follows:

mse =
1
N

N∑
i=1

(
yi − y’i

)2 (3)

where N is the number of test samples. There are other
errors that can be used, such as the mean relative error
or the root mean squared error, however, the mse is one
of the most used errors for performance evaluation of
an artificial neural network.

3.2 Probabilistic neural network

The mathematical foundations on which PNNs are
built has been known for several decades, even though
they were proposed long before than ANNs (Meisel,
1972; Yenugu et al., 2010). However, because of the
large computational requirements of their algorithm,
they were considered as unpractical and inapplicable
systems. It is known that PNNs were explored and
applied widely after 1990 when Specht (1990) showed

how this algorithm could be divided into components
and how each component could operate in a parallel
way. PNNs are, by their own nature, Bayes-Parzen
classifiers (Masters, 1995). Thus, they use class
members of one, two or more classes for their training.
Therefore, their main application is to examine a set
of inputs in order to decide to which class each of this
inputs belongs to.
A PNN has four layers: the input layer, the pattern
layer, the summation layer and the decision layer. The
input layer normalizes the range of the values so that
they can be used in the next layer. The number of
columns in the training set input is equal to the number
of inputs of the PNN (U), likewise, the number of
columns in the training set target is equal to the
number of outputs of the PNN. The pattern layer
has one neuron for each case in the training set. In
this layer, a neuron computes the Euclidean distance
from the center of the neuron to the training case,
and then applies a kernel function. The shape of the
kernel function is determined by the parameter σ. The
summation layer contains one neuron for each class,
and finally the decision layer contains one neuron
that simply retains the maximum of the summation
neurons as is shown in Fig. 3.

In this layer, it is decided to which category the
input vector x belongs using the Bayes’ theorem. The
output for each neuron located at the summation layer
is defined as follows:

gc(x) =
1

σc1σc2 · · ·σcU

N∑
i=1

δc(i)exp

− U∑
j=1

(
x j − xi j

σc j

)2
(4)

 

Figure 3. Common architecture of a PNN. 

 

 

 

Figure 4. Proposed models for mapping the energy performance compressor. 
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where σc j is the smoothing parameter related
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to each cth class and to each jth input feature, it
represents the standard deviation around the mean of
U random variables included in vector x. And,

δc(i) =

{
1, if i = c
0, otherwise (5)

A continuous error criterion was introduced to be able
to use the PNN for mapping purposes, deep details and
mathematical foundations can be found in Schioler
and Hartmann (1992).

4 Proposed model and results
A data acquisition system was used to collect 4000
measurement samples at stationary state, see Section
2. Then, the acquired data were organized in digital
files and split to create the training set and the
validation set. An ANN learns by cases called training
cases. Typically, a dataset is split to create the training
set and the validation set; however, the training set
must include all different test cases of the experimental
plant. For instance, if 80% of the cases are used
for training, then the 20% remaining cases must be
used for validation. Other alternatives to split the data
set may be: 70% for training / 30% for validation,
60% for training / 40% for validation, etc. However,
when the percentage used for training is small, it
is possible that some test cases are not included in
the training set (Schioler and Hartmann, 1992). After
performing computer simulations, it was concluded
that the percentage rate that provided the best results
was 85% (3,400 samples) of the total data for training
and the remaining 15% (600 samples) for validation.
One of the main purposes of the compressor is to
provide a pumping effect to push the working fluid
along the vapor compression system. A compressor is
characterized by the estimation of the mass flow rate.
Throughout the internal processes that increase the
pressure, the fluid experiences changes in temperature,
and therefore, the discharge temperature becomes
considerably higher than the suction temperature.
Since the discharge pressure is a known parameter,
determining the discharge temperature helps to define
the thermodynamic state at the discharge line. Finally,
according to the first law of thermodynamics, in order
to pass from a state of low thermal energy to a state of
high thermal energy, it is necessary to consume some
amount of energy. In fact, in some optimization cases,
this energy consumption is the objective function to be
minimized. The knowledge of these energy parameters
helps evaluate the performance of the compressor as
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well as the performance of the whole refrigeration
system. Each of these parameters is modeled using an
ANN or a PNN as shown in Fig. 4. In this scheme, it
can be seen that the network has four inputs and three
outputs (one for each energy parameter).

There are two types of training methods:
supervised training and unsupervised training. In
supervised training, a network learns by extracting
information from the input training set and the target
training set; this type of learning is used in ANNs and
PNNs. In this work, the training for both models was
performed in two steps in order to improve the quality
of the training. For the ANN, simulated annealing was
used first, then the conjugate gradient method was
used. For the PNN, the network was first trained using
the conjugate gradient method, and then, the network
was trained using the variable metric method. The
parameters for each training method were adjusted to
obtain the best results; the optimal values are shown in
Table 3.

4.1 Mass flow rate

The analysis begins with the training of the ANN. In
order to adjust the number of neurons in the hidden
layer, the mean squared error (mse, defined in previous
sections) for training and for validation was estimated
for different number of neurons in the hidden layer.
Thus, computer simulations began creating an ANN
with zero neurons in the hidden layer; the number of
neurons in this layer was increased one by one and
the mse for training and the mse for validation were
computed as it shown in Fig. 5. It can be seen from
this figure that at the beginning of the simulation, both
the mse for training and the mse for validation are close
to 4.5× 10−6. As the number of neurons in the hidden
layer λ increases, the mse for training and the mse for
validation decrease. However, there is a point where
further improvement is not obtained.
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Table 3. Methods and parameters used for training.

ANN training

Simulated annealing Conjugate gradient

Initial temperature=30 Iterations=1000
Final temperature=0.1 mse goal=1E-5

Number of temperatures=100
Number of iterations per temperature=100

Cooling schedule=linear

PNN training

Conjugate gradient Variable metric

Iterations=1000 Iterations=1000
mse goal=1E-5 mse goal=1E-5
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Fig. 5. ANN performance for the mass flow rate
when the number of neurons in the hidden layer
changes. The mean squared error is used to verify the
network’s quality since it is represented by: mse =

1
N

N∑
i=1

(
yi − y’i

)2. Where N is the total training cases, y

is the expected value, y′ is the calculated value and i is
a particular case.

Therefore, it is anticipated that in order to model the
mass flow rate, an ANN with seven neurons in the
hidden layer is enough to obtain quite good results.
For this specific number of hidden neurons, the mse
for training was 1.4× 10−6 and the mse for validation
was 1.6× 10−6.

For the PNN model, first it is necessary to train
the network by finding the optimum values of σc j
in Eq. 4. There are several methods to perform this
optimization; however most of them are based on the
estimation of the error derivative with respect to each
parameter σc j. Note that for this type of network, it is
not required to adjust any parameter; that is, once it has
been trained, the obtained performance is the best that
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Fig. 6. Estimation of the mass flow rate using an ANN
and a PNN.

can be attained by this method. After the computer
simulations were completed, the mse for training was
1.48×10−5 and the mse for validation was 1.49×10−5.

In Fig. 6, it is presented the mass flow rate
validation for both the ANN and the PNN. From this
figure, it can be seen that the ANN error lies in the
range from 8 × 10−5 to 5 × 10−3 kg/s, while the PNN
error lies in the range from 1.4 × 10−4 to 1.2 × 10−2

kg/s.
Based on the validation errors that were estimated

from the computer simulations, it can be concluded
that both models provide a relatively small error.
However, the ANN model provides a slightly
better approximation for the actual behavior of the
compressor. In practical terms, both models are
capable of adequately simulating the mass flow rate
of the refrigerant.

4.2 Discharge temperature

The ANN model for the discharge temperature is
similar to the ANN model used for the mass flow
rate. In order to adjust the number of neurons in the
hidden layer the same procedure described in Section
4.1 was used. At the beginning of the simulation with
zero neurons in the hidden layer, the mse for training
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Figure 6. Estimation of the mass flow rate using an ANN and a PNN. The absolute error is 

the difference between the experimental output and the computed output. 
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Figure 8. Estimation of the discharge temperature using an ANN and a PNN. The absolute 
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Fig. 8. Estimation of the discharge temperature using
an ANN and a PNN.

was 3.02 and the mse for validation was 2.14, see Fig.
7. At the end of the simulation with twenty neurons
in the hidden layer both the mse for training and the
mse for validation were close to 0.38. It can be seen
that with λ > 9, there is not a noticeable improvement
obtained. Therefore, it is optimal to use an ANN with
nine neurons in the hidden layer for predicting the
discharge temperature. For this specific number of
hidden neurons, both the mse for training and the mse
for validation were close to 0.45. For the PNN model,
the mse for training was 3.9 and the mse for validation
was 4.2.

Fig. 8 shows the validation results for the ANN and
the PNN. It can be observed from this figure that both
models provide a minimum error of approximately
5.5×10−2 K. For the ANN, the maximum error is 1.6 K
which is acceptable for most applications. On the other
hand, the maximum error for the PNN is 8 K which
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Figure 10. Estimation of the energy consumption using an ANN and a PNN. The absolute 

error is the difference between the experimental output and the computed output. 
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Fig. 10. Estimation of the energy consumption using
an ANN and a PNN.

is higher than the error produced by the ANN model.
Consequently, it can be concluded that the ANN model
is a better option to predict the discharge temperature
than the PNN model for this specific compressor.

4.3 Energy consumption

The last parameter to model is the energy consumption
of the compressor. At the beginning of the simulation
with zero neurons in the hidden layer, both the mse for
training and the mse for validation were 0.013, see Fig.
9. It can see that with λ > 5, there is not an important
improvement obtained. Therefore, it is optimal to use
an ANN with five neurons in the hidden layer for
predicting the energy consumption. For this specific
number of hidden neurons, both the mse for training
and the mse for validation were close to 3.2×10−3. For
the PNN model, the mse for training was 4.3×10−2 and
the mse for validation was 4.1× 10−2.
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Fig. 10 shows the validation results for the energy
consumption. For this figure, it can be seen that the
ANN model has a minimum error of 6.3 × 10−4 kW
and a maximum error of 1.2 × 10−1 kW. While the
PNN model has a minimum error of 4.5 × 10−3 kW
and a maximum error of 4 × 10−1 kW. Finally, it can
be appreciated that the ANN model provides a little
better approximation than the PNN for the prediction
of the energy consumption.

The results of the computer simulations show that
these methods can be used to model a reciprocating
compressor. For the prediction of mass flow rate, a
comparison between the ANN and the PNN model,
it can be concluded that both models provide a
similar performance. For the discharge temperature,
the results of the computer simulations indicated that
the ANN model provided a better prediction than the
PNN model. Finally, an inspection of the simulation
results for the energy consumption showed that, from
a practical point of view, both models offered a similar
performance for the prediction of this parameter.

To end the discussions it is meaningful to
mention that neural networks can handle data
sets obtained from an experimental operation
of a reciprocating compressor, even though this
phenomena is considered as a complex thermal device.
According to the results, ANNs is a good mapping
tool for thermal prediction of a compression process.
However, the main problem presented by this kind of
model is that it is do not know how numerically it
operates and there is not any theoretical explanation
each weigh or neuron. Other disadvantage is its high
training-time. On the other hand, PNNs has clear
mathematical foundations and the training-time is
lower than ANN. Its main disadvantages is that it
is relatively slow to make the mapping and it requires
a large amount of memory.

Conclusions

This paper proposes the use of an ANN and a PNN to
model a reciprocating compressor. A data acquisition
system was installed in a compressor located in
a test bench to collect test samples. The input
variables of the model to simulate the compressor
were: compressor rotation speed, suction pressure,
suction temperature and discharge pressure. While the
compressor output variables were: mass flow rate,
discharge temperature and energy consumption. These
experimental measurement samples were processed to
create a training set and a validation set. Finally, these

data sets were used to train and validate an ANN and a
PNN. Computer simulations were used to estimate the
mse for training and for validation in order to assess
the performance of each model for each parameter. A
list of the principal conclusions of this work is shown
below:

• Both models required a set of input variables
that were easy to obtain from the experimental
installation. The input variables and output
parameters are the most representative to
describe the energy behavior of the compressor.

• One of the main advantages of using neural
networks is that they can create non-linear
models that can adapt to experimental
information. The ANN model and the PNN
model are techniques that can be used to
perform nonlinear statistical modeling and
provide an alternative to model a compressor.

• Finally, the results from the computer
simulations indicated that these models can
be effectively used to predict the energy
performance of the compressor, and provide
the basis to simulate and control the energy
consumption in vapor compression systems.

Acknowledgements
The authors are grateful to ISTENER Research Group
of University of Jaume I for the sponsorship for this
work.

References
Barroso Maldonado, J.M., Belman Flores, J.M.,

Ledesma, S. (2015). Modeling of the
compression process for refrigerants R134a
and R1234yf of a variable speed reciprocating
compressor. Journal of Advanced Thermal
Science Research 1, 11-22.

Belman Flores, J.M., Ledesma, S.E., Garcı́a, M.G.,
Ruiz, J., Rodrı́guez Muñoz, J.L. (2013).
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Rodrı́guez-Muñoz, A.P., Camacho-Vázquez,
G. (2015). Enhancements in domestic
refrigeration, approaching a sustainable

www.rmiq.org 687



Barroso-Maldonado et al./ Revista Mexicana de Ingenierı́a Quı́mica Vol. 16, No. 2 (2017) 679-690

refrigerator-a review. Renewable and
Sustainable Energy Reviews 51, 955-968.

Bin, S., Jin, Z., Shaoji, Z. (2000). An investigation of
artificial neural network (ANN) in quantitative
fault diagnosis for turbofan engine. ASME
Turbo Expo 2000: Power for Land, Sea, and Air
8, 1-7.

Coulomb D. (2006). Refrigeration: The Challenges
Associated with Sustainable Development. 6th
International Conference on Compressors and
Coolants, Slovak Republic.

Damle, R., Rigola, J., Pérez, C., Castro, J.,
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